Review of Plutonium Attribute Measurement Technologies: Gamma-Ray and Symmetry Measurements

Thomas Gosnell

Lawrence Livermore National Laboratory

What This Talk Will Cover

Attributes	Methods	Sensors
Plutonium age Presence of Pu	Pu-300	High-purity Ge (50%)
Presence of Pu Presence of WG Pu	Pu-600	
Absence of PuO ₂	Pu-900	High-purity Ge (100%)
Symmetry	nSymmetry	Neutron singles detectors

Gamma-Ray Methods

- Elements common to each of the gamma-ray measurements
 - —Collect only the data required
 - —Measurement geometry
 - —Source and geometry independence
- Elements specific to each of the gamma-ray measurements
 - —Pu-300
 - —Pu-600
 - —Pu-900

Collect Only the Data Required

Gamma-Ray Measurement Geometry

Both the Pu-300/600 detector and the Pu-900 detector view the source through the neutron multiplicity counter (NMC).

Source and Geometry Independence

- > To achieve this independence we:
 - Fix the source/detector distance
 - Fix the counting interval

We do this by:

- Employing a massive shield
- An autonomous tungsten iris
 - Optimizes count rate
 - Shrouds the counting geometry

Why Use Two Gamma-Ray Detectors?

 To save time—to make the measurements in narrow energy bands, three separate measurements must be made.

Detector 1

The Pu-300 and Pu-600 measurements are made serially

Pu-300 (age attribute) Pu-600 (weapon-grade attribute)

Detector 2

Simultaneously, the Pu-900 measurement is being made Pu-900 (absence of PuO₂ attribute)

Pu-300—Plutonium Age / Presence of Pu

Presence of Pu indicated by the 345.0 keV ²³⁹Pu line.

- Pu age since separation determined by the ratio of ²⁴¹Am to ²⁴¹Pu.
- The ratio of the 332.4 and 335.4 keV lines is a function of time because they are populated at different rates in the two decay branches.

Pu-600—Weapons-Grade Pu / Presence of Pu

Weapons-grade plutonium:

- For weapons-grade plutonium: ²³⁹Pu + ²⁴⁰Pu ≈ Total Pu.
- Therefore, if the ratio
 240Pu/ ²³⁹Pu is low, the material is weapons-grade.
- This value is also used in conjunction with the neutron multiplicity data to determine the plutonium mass.

Presence of plutonium:

- 646 and 659 keV peaks.
- Determination of presence requires both the 345 keV peak from Pu-300 and the 646 and 659 keV peaks from Pu-600.

Weapons-Grade Pu Presence in Storage Containers— Pu-600 Method Measures ²⁴⁰Pu/²³⁹Pu Ratio

- Uses commercial equipment
- A variant of MGA plutonium isotopics code
- Successfully tested against a variety of Pu objects in various types of containers

Successfully tested against a variety of Pu objects in various types of containers

Pu-900—Verify Absence of PuO₂: A Work in Progress

- We use the 870.8 keV gamma ray from the first excited state of ¹⁷O as an indicator of the presence of PuO₂.
- The source of this gamma ray is somewhat ambiguous.
 - It is known to arise from coulomb excitation (α , α '), likely due to alpha decay of ²³⁹Pu.
 - It may also be due to an (α,p) reaction from nitrogen impurities.
 - Experiments to resolve this ambiguity are underway.
- Our experience shows that this peak is always present in PuO₂ and not present in Pu metal.

- A shoulder peak is sometimes observed and is easily resolved.
- The origin of this peak is also under investigation.

Neutron Method for Measuring Symmetry

- Under some circumstances, it may be important to know if the object in a storage container is cylindrically symmetrical.
- We test for cylindrical symmetry as indicated by an isotropic neutron radiation field:
 - -suggested by the Russian Federation at Moscow talks in 1996
 - US/Russian Federation experiments tested the method at LLNL in November 1996.

Cylindrical Symmetry as Indicated by an Isotropic Neutron Radiation Field

- Ideally, if the item is cylindrically symmetrical, the neutron counts in all detectors will be equal.
- We test for a significant variation from equality:

$$s = \max\left(\frac{|y_i - \overline{y}|}{\overline{y}}\right), \quad \sigma_s = \frac{\sqrt{y_i}}{\overline{v}}$$

• To fail the symmetry test, both s and s/σ_s must be large (>0.15 and >3).

